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Abstract 

Big data analytics offers endless opportunities for operational enhancement by extracting 
valuable insights from complex voluminous data.  Hadoop is a comprehensive technological 
suite which offers solutions for the large scale storage and computing needs of Big data.  The 
performance of Hadoop is closely tied with its configuration settings which depends on the 
cluster capacity and the application profile.  Since Hadoop has over 190 configuration 
parameters, tuning them to gain optimal application performance is a daunting challenge.  Our 
approach is to extract a subset of impactful parameters from which the performance enhancing 
sub-optimal configuration is then narrowed down.  This paper presents a statistical model to 
analyze the significance of the effect of Hadoop parameters on a variety of performance 
metrics.  Our model decomposes the total observed performance variation and ascribes them 
to the main parameters, their interaction effects and noise factors.  The method clearly 
segregates impactful parameters from the rest. The configuration setting determined by our 
methodology has reduced the Job completion time by 22%, resource utilization in terms of 
memory and CPU by 15% and 12% respectively, the number of killed Maps by 50% and Disk 
spillage by 23%.  The proposed technique can be leveraged to ease the configuration tuning 
task of any Hadoop cluster despite the differences in the underlying infrastructure and the 
application running on it. 
 
 
Keywords: ANOVA, Big data, Configuration tuning, General Factorial Design, Hadoop, 
Impactful parameters 
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1. Introduction 

     The dawn of the internet era has dramatically revolutionized the way the world operates.  
A host of disruptive technologies and platform-based businesses have transformed the way we 
conduct our common cores.  These technology-aided human activities generate incredible 
volumes of data loaded with invaluable insights.  The current global internet population of 
about 5.17 billion [1] generate approximately 2.5 quintillion bytes of data each day [2] and the 
onslaught of technologies like Internet of Things, Social networks and Cloud platforms has 
further ramped up the speed of data generation, looming the Big data whirlwind to gargantuan 
proportions.  Businesses have realized that their success proposition lies in unlocking the 
wealth of insights buried in these massive amounts of data.  Over the past decade, a majority 
of enterprises have turned towards Big data and AI to improve their efficiency, competence 
and resilience in their business landscape [3].  The worldwide spending on Big data initiatives 
which was $180 billion in 2019 is projected to reach a whopping $274.3 billion in 2022 [2].  
Yet, this burgeoning trend is just the first of a nine inning game.   
     Despite the incredibly promising opportunities upfront, a host of challenges involving data 
capture, transfer, analysis, visualization, security, etc., confront technologists seeking robust 
solutions for seamless Big data application performance.  In 2006, Doug Cutting and Mike 
Cafarella responded to the clarion call with their ingenious Big data solution called Hadoop 
[4].  Hadoop is a large-scale distributed storage and parallel computing platform based on 
Google’s MapReduce.  It comprises of Java-based software utilities for core Hadoop together 
with a host of other components like Hive, Pig, Zookeeper and Ambari.  It works together with 
real-time stream-processing frameworks like Apache's Spark, Samza, Flume and Kafka.  
Thanks to the vibrant Hadoop developer community, today Hadoop has evolved as the most 
comprehensive open source ecosystem for Big data computing. 
     Hadoop is deployed on a network of physical machines in order to realize the large scale 
storage and computing requirements of Big data applications.  However, the distributed nature 
of Hadoop clusters and the disparate capacities of the commodity hardware that make up the 
cluster infrastructure spur up a gamut of issues.  Often inconspicuous small technical glitches 
trigger performance deterioration and hardware failures which could easily beset even the 
adept Hadoop professionals.  According to Bobby Johnson, formerly responsible for running 
Facebook’s Hadoop cluster, “the Hadoop community has so far failed to account for the poor 
performance and high complexity of Hadoop.  If you have that power and you know how to 
use these tools, then this thing is super powerful [5]”. 
     The stability and performance of Hadoop clusters are closely knit with three factors viz., 
Hadoop configuration settings, cluster capacity and application profile.  While decisions on 
cluster infrastructure are primarily made during the initial phase of cluster deployment, and 
the management of Hadoop applications are carried out using sophisticated machine learning 
and AI based algorithms as per the enterprise need, the routine activities of monitoring and 
configuration tuning turn out to be crucial to ensure cluster health and application performance.  
In practice, Hadoop configuration tuning is all about identifying the subset of parameters 
critical to an application’s performance and tweaking them to optimal levels.  But, Hadoop 
has over 190 parameters whose individual and interactive effects on the system performance 
are too complex to capture.  For this reason, Hadoop administrators start with default settings 
and iteratively modify them by trial and error, each time picking a few parameters they 
presume would improve the performance. However, such trial and error fixes may lead to 
unprecedented detrimental consequences. And these stopgap solutions lack the analytical rigor 
that could help explain the impact of the chosen parametric settings.  Many researchers [6] 
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have attempted to derive the optimal configuration to maximize the performance of Hadoop.  
Some have dealt with tuning a parametric subset while others have attempted optimizing the 
entire set of parameters.  While optimizing parametric subsets results in sub-optimal solutions, 
the comprehensive approach is cluttered with high complexity.  More so, then the prospect of 
applying analytically rigorous computational procedures onto the intractable set of Hadoop 
configurations can badly flounder because of their computationally infeasibility.  Hence, we 
propose a technique called General Factorial Design based on Design of Experiments to 
extract only the parameters that exert significant impact on the performance for the purpose of 
configuration tuning.  In doing so we alleviate the dimensionality problem in the configuration 
tuning exercise.  We have demonstrated our technique with a subset of parameters usually 
picked by the authors experimenting with performance tuning.  Our method successfully 
identifies the impact of each parameter and also their interaction effects on the performance.  
It provides the necessary analytical base for Hadoop administrators to validate their parameter 
tuning decisions.  The following contributions are made through this paper: 

1) The proposed technique efficiently quantifies the performance variations caused 
by different configuration settings.  The total observed variance in any performance 
metric is decomposed and attributed to the respective parameters in order to determine 
which of the parameters really do matter in the configuration tuning exercise. 
2) Apart from the direct impact of the main parameters, the technique is also able to 
estimate their interaction effects and the effect of noise factors on the performance.  
It thus eliminates the probability of interpretative flaws that stem out of naïve 
comparisons of metric graphs which may point to a wrong parameter as the one to be 
tweaked.   
3) Our investigation encompasses a variety of crucial performance metrics like the 
number of task failures, disk spillage, resource consumption, etc., beyond the usual 
performance metric viz., job completion time. 
4)  The proposed technique for the analysis of impactful parameters is objective, 
generic and scalable with respect to any subset of parameters and the range of values 
they can assume.   

The rest of the paper is organized in the following manner. Section II contains a brief 
overview of Hadoop with HDFS and MapReduce architectures and their functionalities to 
provide the context for our discussion.  Section III describes some earlier researches in the 
area of configuration tuning.  Section IV presents the problem of identifying impactful 
parameters.  In Section V, we provide the statistical model for the impact analysis in 
Configuration tuning.  The experimental setup detailing the cluster configurations, the 
experimental workload and the subset of parameters chosen for the impact analysis are 
described in Section VI.  Results and discussions are presented in Section VII, followed by 
the conclusion in Section VIII. 

2. Preliminaries 
     Hadoop was designed based on three of Google’s research papers viz., Google File System 
[7], MapReduce [8] and BigTable [9].  In this section, we present an overview of Hadoop 
architecture and the functions of Hadoop daemons.  We also briefly describe the MapReduce 
architecture and the application processing phases. 

2.1 Hadoop Architecture and Daemons 
     The Hadoop framework comprises of Hadoop Distributed File System (HDFS) which 
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facilitates large-scale distributed data storage, Yet Another Resource Negotiator (YARN) for 
apportioning and distributing cluster resources and MapReduce for parallel processing of data-
intensive applications.  The master daemon of HDFS, called NameNode (NN) maintains the 
metadata of the data blocks stored across the cluster and the slave daemons, called DataNodes 
(DN) store the application data.  The Secondary NameNode is a house-keeping daemon which 
regularly checkpoints the metadata using FSimage and Editlogs.  The Standby NameNode acts 
as a backup for the active NameNode and assumes charge in the event of NameNode failure.  
The Yarn daemons viz., Resource Manager (RM), Scheduler and Application Manager (AM) 
are responsible for resource allocation and task scheduling.  The slave daemons called the 
NodeManagers (NM) which reside in the DataNodes are responsible for task execution and 
reporting progress.  The Application Manager which resides in one of the DataNodes manages 
the resource needs of a single application and monitors its life-cycle. 
 

 
 

Fig. 1. Hadoop Overview 
 
2.2 Data Storage and Application Processing 
     To facilitate large-scale data storage across multiple nodes in a cluster, HDFS partitions 
the data into small chunks of size 128MB (default in Hadoop 2.x) called blocks.  The client 
retrieves the list of DNs from the NN and writes each block to some DN based on topological 
proximity.  The blocks are replicated (default replication factor is 3) and stored across the 
racks to insure application performance against accidental data loss.  However, the downside 
of this is the increased data redundancy and substantial wastage of cluster resources. 
     Hadoop applications are implemented using MapReduce programming paradigm to enable 
distributed and parallel computing.  The applications are implemented as mapper and reducer 
tasks along with the driver code which sets up the environment to run the MapReduce job.  
When the user submits the job, the mapper is replicated sufficiently to process the data blocks 
stored in the HDFS.  The mapper reads the input splits and generates 〈𝑘𝑘𝑘𝑘𝑘𝑘, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘〉 pairs which 
are further processed by the reducer tasks to aggregate and write the final output back to HDFS.   
The resources needed for executing the map and reduce tasks are provisioned by the Resource 
Manager using containers.  The tasks are scheduled by the Scheduler component of YARN.  
The job execution is accomplished in the following phases: 

Map Phase: The mapper code first reads and processes the data block stored           in 
the HDFS and produces 〈𝑘𝑘𝑘𝑘𝑘𝑘, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘〉 pairs.   
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Shuffle and Sort Phase: The mapper outputs are grouped by the keys, sorted and 
transferred to an appropriate number of reducers in the shuffle phase.  
Reduce Phase: The reducer aggregates and combines the 〈𝑘𝑘𝑘𝑘𝑘𝑘, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘〉 outputs of    
the Shuffle phase and generates the final output of the MapReduce                     
application. 

 

 

 

 
Fig. 2. HDFS Architecture Fig. 3. MapReduce Job Execution Phases 

3. Related Works 
     The current researches in Hadoop configuration tuning mainly revolve around machine 
learning, simulation, cost-based models, experiment-driven approaches and adaptive models.  
We present some excerpts of our literature survey in this section.   
     Khan et al. [10] worked on optimization of Hadoop configuration parameters using Gene 
Expression Programming (GEP).  Their Enhanced Parallel Detrended Fluctuation Analysis 
(EPDFA) algorithm uses an objective function to identify the optimal values for a set of ten 
Hadoop parameters and determines the mathematical correlation among them based on the 
job execution history.  Liao et al. [11] implemented a search-based auto-tuner called Gunther 
to evaluate variation in MapReduce application performance for different configuration 
settings.  It uses Genetic algorithm to identify parameter settings that achieve near-optimal 
job execution time.  The evaluation of the algorithm is performed on two clusters with a 
subset of six parameters considered most relevant to application performance.  The Feature 
Selection method of tuning Hadoop configuration, proposed by Liu et al. [12] applies 
anisotropic Gaussian Kernel in the objective function based on the Kernel clustering 
algorithm in order to improve the accuracy of evaluating the importance of each MapReduce 
parameter.  Gradient descent is used to minimize the kernel width iteratively so that the 
clusters of the selected features match closely with the original features.  They follow a 
deductive approach of selecting 10 parameters and further reduce the cardinality of the 
chosen parametric subset step by step from 8 to 3 by analyzing their impact on job execution 
time. 
     Bao et al. [13] developed the AutoTune algorithm which uses Latin Hypercube Sampling 
(LHS) to generate effective samples in high-dimensional configuration space and multiple 
bound-and-search method to derive the best configuration.  AutoTune is tested on big data 
benchmarks in public cloud and achieves better results than the default configurations.   Hua 
et al. [14] proposed a non-intrusive performance profiler called H-Tune, which predicts the 
execution time of MapReduce applications.  A meta-heuristic configuration optimizer 
automatically searches and deploys the optimal configurations.  The experiments were 
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performed with twelve parameters.  According to the authors the optimal configuration is 
application and data specific and so it is more appropriate to consider all the relevant 
configurations for optimization.  Chen et al. [15] presented a resource-based classification of 
a subset of eight Hadoop parameters depending on the application profile i.e., IO-bound, 
CPU-bound or hybrid.  Zhu et al. [16] proposed BestConfig, which uses the divide-and-
diverge sampling method and the recursive-bound-and-search method for parameter tuning 
of general systems with resource constraints.  Peyravi et al. [17] reported the runtime 
efficiency of a MapReduce job by considering three categories of parameters that have higher 
impact on the runtime.  They have modeled the runtime efficiency during each phase of the 
Hadoop execution pipeline using a weighing system based of job history.  The benchmarks 
RMSE and MAPE have been used to evaluate the model.   
     Keke et al. [18] developed the CRESP cost model involving time cost, amount of input 
data and free system resources to find the optimal number of map and reduce slots.  They 
have used a weighted linear combination of a set of non-linear functions.  They performed 
variance analysis on different components of the MapReduce workflow to identify the 
possible sources of modeling error.   Ahmed et al. [19] conducted a comparative study of 
Hadoop and Spark performances using Hibenchmark workloads using different 
combinations of parametric settings pertaining to resource utilization, input splits and shuffle 
groups.  They used a subset of nine Hadoop parameters and eight Spark parameters for the 
experiment.  The analysis is conducted by comparing Hadoop and Spark based on three 
performance metrics viz., execution time, throughput and speedup.   
     It is observed that there is little consensus among the authors about the choice of 
parameters for any given application or resource category.  This is due to the huge cardinality 
and complex interdependence of Hadoop parameters and the effect of extraneous factors 
during the application execution. Thus, given the application and cluster setup, the problem 
of identifying the set of impactful parameters still remains a crucial area of investigation.   

4. Impactful Parameter Selection based on General Factorial Design 
The Hadoop configuration set consists of more than 190 parameters related to I/O management, 
slot resource allocation, memory management, concurrency, map and reduce configurations, 
etc. [20].  The objective of Hadoop configuration tuning is to maintain cluster health and 
enhance production efficiency.  The default configurations may not produce the desired 
efficiency due to variations in the cluster capacity and application runtime dynamics.  Hadoop 
professionals start with the default configuration and work iteratively to enhance application 
performance.  From the pilot runs of an application, the job execution is monitored closely to 
check whether the performance meets the expected level of service.  If not, the probable causes 
are tracked and necessary adjustments are made to the relevant parameters to ease the 
performance bottlenecks.  For example, the Terasort application is both CPU and memory 
intensive at the shuffle and sort phase.  It implies that tuning the CPU and memory-specific 
parameters can result in performance enhancement.  The rest of the parameters which are left 
untuned assume default values automatically.  The choice of parameters to be tuned is left to 
the discretion of the Hadoop administrator who relies on his intuit and experience to resolve 
issues.  In case, some critical parameter is tweaked indiscreetly, it may result in application 
and hardware failures.  Hence, Hadoop administrators pay due diligence in considering the 
consequences of tuning the parameters they pick to resolve performance issues.  We highlight 
some of the implications of tuning the test parameters used in our experiment here:  
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i) dfs.replication specifies the desired number of replications of each data block.  Accordingly, 
HDFS replicates data blocks and stores them in different machines on separate racks as per 
the Data placement policy.  The default replication factor is 3. It means thrice the amount of 
input data is stored in the cluster.  Higher replication values increase data redundancy and 
consume more cluster resources.  Nevertheless, high-availability of data in a failure prone 
Hadoop environment is a desirable property.  It is important to determine an appropriate value 
of the parameter to strike the right balance between high-availability of data and job 
performance. 
 
ii) mapreduce.reduce.shuffle.parallelcopies specifies the number of threads used to fetch the 
mapper outputs to reducers.  Hadoop is designed for distributed storage and parallel computing.  
However, an indiscriminate increase in the number of parallel copies in the shuffle phase may 
not always speed up the job process.  On the contrary, if the value the parameter is set greater 
than the number of available cores, many threads will be forced into waiting state and the 
network would be overwhelmed.   
 
iii) mapreduce.task.io.sort.mb specifies the amount of buffer memory used while sorting files.  
When the mapper starts producing the intermediate output it does not directly write the data 
on the local disk. Rather it writes the data in memory and sorts them.  Each map task has a 
circular memory buffer to which it writes the output. By default, this circular buffer is of size 
100 MB which can be modified using this parameter.  The maximum value is 2047 MB. When 
the contents of the buffer reach the default threshold of 80%, a background thread would start 
spilling the contents to the disk. Map outputs will continue to be written to the buffer while 
the spill occurs, but if the buffer fills up during this time, the task execution on the mapper 
outputs will be stalled until the execution on the spilled data is completed.  This would again 
prolong the job processing time. 

 
iv) mapreduce.job.reduces sets up the number of reducers which defines the level of 
parallelism in the reduce phase.  By default, the value is one, but no parallelism can be 
achieved with one reducer.  If the number of reducers is increased, ideally, it should result in 
better load balancing and faster job execution.  However, setting an appropriate number of 
reducers is a lot trickier as it depends on the mapper outputs. 
 
Depending on the varying hardware configurations and the application demands, the 
parameters have to be suitably adjusted to increase productivity.  Bad configuration settings 
could make things go haywire in the complex Hadoop environment.  Hence, monitoring and 
configuration tuning are indispensable to keep the cluster up and running.  However, the large 
cardinality of the Hadoop parametric set and the unknown range of workable values make the 
problem of identifying the optimal configuration, an insoluble combinatorial puzzle.  
According to Levitin [21], most computer scientists believe that no solution exists both in 
theory and practice for such combinatorial problems.  Even working with a subset of 
parameters can be complicated as the number of combinations grows exponentially with every 
addition of parameter.  The complexity is further exaggerated by the interaction and noise 
effects.   In this context, we propose an objective technique of narrowing down the search 
space for the sub-optimal solution. Our approach is to extract the parameters which 
significantly impact the performance using a quantitative technique based on General Factorial 
Design.   
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5. The Proposed Analytical Model 
     General Factorial Design is a statistical experimental design technique which aims to 
investigate a system’s response to the changes in the factors influencing it.  Its purpose is to 
inspect the main effects and interaction effects of those factors set at different levels.  In our 
experiment, the design examines the effect of configuration settings of four parameters viz., 
A: mapreduce.job.reduces (2 levels: 1, 10), B: dfs.replication (3 levels: 1, 2, 3), C: 
mapreduce.reduce.shuffle.parallelcopies (2 levels: 5, 10) and D: mapreduce.task.io.sort.mb (3 
levels: 64, 128, 256) on performance metrics like Job Completion Time, CPU utilization, 
Memory utilization, number of killed map tasks, etc., each of which is a response variable of 
the Hadoop system.  The response variable denoted by 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the linear sum of the main 
effects, interaction effects (2-way, 3-way and 4-way) and noise effects, given by   
 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖 + 𝐶𝐶𝑖𝑖 + 𝐷𝐷𝑖𝑖 + (𝐴𝐴𝐵𝐵)𝑖𝑖𝑖𝑖 + (𝐴𝐴𝐶𝐶)𝑖𝑖𝑖𝑖 + (𝐴𝐴𝐷𝐷)𝑖𝑖𝑖𝑖 + (𝐵𝐵𝐶𝐶)𝑖𝑖𝑖𝑖 + (𝐵𝐵𝐷𝐷)𝑖𝑖𝑖𝑖 + (𝐶𝐶𝐷𝐷)𝑖𝑖𝑖𝑖 +
(𝐴𝐴𝐵𝐵𝐶𝐶)𝑖𝑖𝑖𝑖𝑖𝑖 + (𝐴𝐴𝐵𝐵𝐷𝐷)𝑖𝑖𝑖𝑖𝑖𝑖 + (𝐴𝐴𝐶𝐶𝐷𝐷)𝑖𝑖𝑖𝑖𝑖𝑖 + (𝐵𝐵𝐶𝐶𝐷𝐷)𝑖𝑖𝑖𝑖𝑖𝑖 + (𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖                         (1) 
 

𝑤𝑤ℎ𝑘𝑘𝑒𝑒𝑘𝑘

⎩
⎪
⎨

⎪
⎧
𝑖𝑖 = 1,2,⋯ , 𝑣𝑣
𝑗𝑗 = 1,2,⋯ , 𝑏𝑏
𝑘𝑘 = 1,2,⋯ , 𝑐𝑐
𝑣𝑣 = 1,2,⋯ ,𝑑𝑑
𝑚𝑚 = 1,2,⋯ ,𝑛𝑛

 

 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖             : response variable, viz., Job completion time, memory utilization, etc. 
a,b,c,d           : number of levels of the 4 factors A, B, C & D respectively  
n                    : number of replications of each test case 
𝑘𝑘(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖           : error due to extraneous factors 
𝜇𝜇                    : overall effect which is estimated by the grand mean  
𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 ,𝐶𝐶𝑖𝑖 ,𝐷𝐷𝑖𝑖    : response values of the main effects 
(𝐴𝐴𝐶𝐶)𝑖𝑖𝑖𝑖 , …       : response values of 2-way interactions                       
(𝐴𝐴𝐵𝐵𝐶𝐶)𝑖𝑖𝑖𝑖𝑖𝑖 , …   : response values of 3-way interactions   
(𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    : response values of 4-way interactions 
 
     We set the Null Hypothesis 𝐻𝐻0 and the Alternate Hypothesis 𝐻𝐻1  to test whether the 
quantum of variance produced by each of the main factors A, B, C and D and their interaction 
effects is significant or not.  
For the main factor A:                𝐻𝐻0:𝐴𝐴1 = 𝐴𝐴2 = ⋯ = 𝐴𝐴𝑎𝑎= 0   (1) 

𝐻𝐻1: 𝑣𝑣𝑎𝑎𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑘𝑘𝐴𝐴𝑖𝑖 ≠ 0 
Similar hypotheses can be defined for the variance produced by the other main effects B, C 
and D. 
For the interaction factor AB:      𝐻𝐻0: (𝐴𝐴𝐵𝐵)𝑖𝑖𝑖𝑖 = 0,∀𝑖𝑖, 𝑗𝑗      (2) 

 𝐻𝐻1: 𝑣𝑣𝑎𝑎𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑘𝑘(𝐴𝐴𝐵𝐵)𝑖𝑖𝑖𝑖 ≠ 0 
Similar hypotheses can be defined for the variance produced by the other 2-factor interaction 
effects AC, AD, BC, BD and CD. 
For the interaction factor ABC: 

𝐻𝐻0: (𝐴𝐴𝐵𝐵𝐶𝐶)𝑖𝑖𝑖𝑖𝑖𝑖 = 0,∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘     (3) 
 𝐻𝐻1: 𝑣𝑣𝑎𝑎𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑘𝑘(𝐴𝐴𝐵𝐵𝐶𝐶)𝑖𝑖𝑖𝑖𝑖𝑖 ≠ 0 

Similar hypotheses can be defined for the variance effected by the other 3-factor interaction 
effects ABD, ACD and BCD. 
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For the 4-factor interaction effect of ABCD:    
 𝐻𝐻0: (𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0,∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑣𝑣     (4) 
 𝐻𝐻1: 𝑣𝑣𝑎𝑎𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑘𝑘(𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≠ 0. 

The total sum of squares of the variance is given by 
                                       𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑖𝑖 = ∑ ∑ ∑ ∑ ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝑛𝑛

𝑖𝑖=1
𝑑𝑑
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1

𝑏𝑏
𝑖𝑖=1

𝑎𝑎
𝑖𝑖=1 − 𝐶𝐶𝐶𝐶             (5)      

where   𝐶𝐶𝑎𝑎𝑒𝑒𝑒𝑒𝑘𝑘𝑐𝑐𝑎𝑎𝑖𝑖𝑎𝑎𝑛𝑛𝐶𝐶𝑣𝑣𝑎𝑎𝑎𝑎𝑒𝑒(𝐶𝐶𝐶𝐶) = 𝑇𝑇.…
2

𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑛𝑛
                                                                 

The sum of squares of the main effects is given by the sum of their respective levels: 

𝑆𝑆𝑆𝑆𝐴𝐴 =
∑ 𝑇𝑇𝑖𝑖….

2𝑎𝑎
𝑖𝑖=1

𝑏𝑏𝑐𝑐𝑑𝑑𝑛𝑛
− 𝐶𝐶𝐶𝐶, 𝑆𝑆𝑆𝑆𝐵𝐵 =

∑ 𝑇𝑇.𝑖𝑖…
2𝑏𝑏

𝑖𝑖=1

𝑣𝑣𝑐𝑐𝑑𝑑𝑛𝑛
− 𝐶𝐶𝐶𝐶 

                                         𝑆𝑆𝑆𝑆𝐶𝐶 = ∑ 𝑇𝑇..𝑘𝑘..
2𝑐𝑐

𝑘𝑘=1
𝑎𝑎𝑏𝑏𝑑𝑑𝑛𝑛

− 𝐶𝐶𝐶𝐶, 𝑆𝑆𝑆𝑆𝐷𝐷 = ∑ 𝑇𝑇…𝑙𝑙.
2𝑑𝑑

𝑙𝑙=1
𝑎𝑎𝑏𝑏𝑐𝑐𝑛𝑛

− 𝐶𝐶𝐶𝐶                          (6) 
The two factor interaction sums of squares are given by 

𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵 =
∑ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖…

2𝑏𝑏
𝑖𝑖=1

𝑎𝑎
𝑖𝑖=1

𝑐𝑐𝑑𝑑𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴 − 𝑆𝑆𝑆𝑆𝐵𝐵 

𝑆𝑆𝑆𝑆𝐴𝐴𝐶𝐶 =
∑ ∑ 𝑇𝑇𝑖𝑖.𝑖𝑖.

2𝑐𝑐
𝑖𝑖=1

𝑎𝑎
𝑖𝑖=1

𝑏𝑏𝑑𝑑𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴 − 𝑆𝑆𝑆𝑆𝐶𝐶 

𝑆𝑆𝑆𝑆𝐴𝐴𝐷𝐷 =
∑ ∑ 𝑇𝑇𝑖𝑖..𝑖𝑖2𝑑𝑑

𝑖𝑖=1
𝑎𝑎
𝑖𝑖=1

𝑏𝑏𝑐𝑐𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴 − 𝑆𝑆𝑆𝑆𝐷𝐷  

𝑆𝑆𝑆𝑆𝐵𝐵𝐶𝐶 =
∑ ∑ 𝑇𝑇.𝑖𝑖𝑖𝑖.

2𝑐𝑐
𝑖𝑖=1

𝑏𝑏
𝑖𝑖=1

𝑣𝑣𝑑𝑑𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐵𝐵 − 𝑆𝑆𝑆𝑆𝐶𝐶  

                                  𝑆𝑆𝑆𝑆𝐵𝐵𝐷𝐷 =
∑ ∑ 𝑇𝑇.𝑖𝑖.𝑖𝑖

2𝑑𝑑
𝑖𝑖=1

𝑏𝑏
𝑖𝑖=1

𝑣𝑣𝑐𝑐𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐵𝐵 − 𝑆𝑆𝑆𝑆𝐷𝐷                               (7) 

𝑆𝑆𝑆𝑆𝐶𝐶𝐷𝐷 =
∑ ∑ 𝑇𝑇..𝑖𝑖𝑖𝑖

2𝑑𝑑
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1

𝑣𝑣𝑏𝑏𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐷𝐷 

The three-factor interaction sums of squares are given by 

𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶 =
∑ ∑ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖..

2𝑐𝑐
𝑖𝑖=1

𝑏𝑏
𝑖𝑖=1

𝑎𝑎
𝑖𝑖=1

𝑑𝑑𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴 − 𝑆𝑆𝑆𝑆𝐵𝐵 − 𝑆𝑆𝑆𝑆𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵 − 𝑆𝑆𝑆𝑆𝐵𝐵𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐶𝐶  

𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐷𝐷 =
∑ ∑ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖 .𝑖𝑖.

2𝑑𝑑
𝑖𝑖=1

𝑏𝑏
𝑖𝑖=1

𝑎𝑎
𝑖𝑖=1

𝑐𝑐𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴 − 𝑆𝑆𝑆𝑆𝐵𝐵 − 𝑆𝑆𝑆𝑆𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵 − 𝑆𝑆𝑆𝑆𝐵𝐵𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐷𝐷  

𝑆𝑆𝑆𝑆𝐴𝐴𝐶𝐶𝐷𝐷 =
∑ ∑ ∑ 𝑇𝑇𝑖𝑖.𝑖𝑖𝑖𝑖.2𝑑𝑑

𝑖𝑖=1
𝑐𝑐
𝑖𝑖=1

𝑎𝑎
𝑖𝑖=1

𝑏𝑏𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴 − 𝑆𝑆𝑆𝑆𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐷𝐷  

            𝑆𝑆𝑆𝑆𝐵𝐵𝐶𝐶𝐷𝐷 =
∑ ∑ ∑ 𝑇𝑇.𝑖𝑖𝑖𝑖𝑖𝑖.

2𝑑𝑑
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1

𝑏𝑏
𝑖𝑖=1

𝑣𝑣𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐵𝐵 − 𝑆𝑆𝑆𝑆𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐵𝐵𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐵𝐵𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐷𝐷      (8) 

The four-factor interaction sum of squares is given by 

𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷 =
∑ ∑ ∑ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘𝑙𝑙.

2𝑑𝑑
𝑙𝑙=1

𝑐𝑐
𝑘𝑘=1

𝑏𝑏
𝑖𝑖=1

𝑎𝑎
𝑖𝑖=1

𝑛𝑛
− 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴 − 𝑆𝑆𝑆𝑆𝐵𝐵 − 𝑆𝑆𝑆𝑆𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐵𝐵𝐶𝐶 −

𝑆𝑆𝑆𝑆𝐵𝐵𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐶𝐶𝐷𝐷 − 𝑆𝑆𝑆𝑆𝐵𝐵𝐶𝐶𝐷𝐷             (9) 
The sum of squares of these main and interaction factors are denoted by 𝑆𝑆𝑆𝑆𝑇𝑇𝑒𝑒 in the ANOVA 
table [2].  The error sum of squares is obtained by subtracting the sum of squares of all the 
main and interaction effects from the total sum of squares. 

                                 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑖𝑖𝑎𝑎𝑖𝑖𝑛𝑛&𝑖𝑖𝑛𝑛𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎𝑐𝑐𝑇𝑇𝑖𝑖𝑇𝑇𝑛𝑛_𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑐𝑐𝑇𝑇𝑒𝑒                          (10) 
The degrees of freedom (df) is evaluated for the main factors using  
𝑑𝑑𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖𝑛𝑛𝑒𝑒𝑎𝑎𝑐𝑐𝑇𝑇𝑇𝑇𝑖𝑖                 = 𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎 − 1                           (11) 
𝑑𝑑𝑑𝑑2−𝑒𝑒𝑎𝑎𝑐𝑐𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎𝑐𝑐𝑇𝑇𝑖𝑖𝑇𝑇𝑛𝑛𝑒𝑒 = (𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒1 − 1) × (𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒2 − 1) 
𝑑𝑑𝑑𝑑3−𝑒𝑒𝑎𝑎𝑐𝑐𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎𝑐𝑐𝑇𝑇𝑖𝑖𝑇𝑇𝑛𝑛𝑒𝑒 = (𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒1 − 1) × (𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒2 − 1) 

                                                                                    × (𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒3 − 1) 
𝑑𝑑𝑑𝑑4−𝑒𝑒𝑎𝑎𝑐𝑐𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎𝑐𝑐𝑇𝑇𝑖𝑖𝑇𝑇𝑛𝑛𝑒𝑒 = (𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒1 − 1) × (𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒2 − 1)  
                                    × (𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒3 − 1) × (𝑛𝑛𝑎𝑎. 𝑎𝑎𝑑𝑑𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒4 − 1)  
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     The computations for mean square error and F-statistic values are presented in the ANOVA 
table.  These values are compared with the tabulated values viz., F-critical at 5% level of 
significance for the respective degrees of freedom.   
 

Table 1. Analysis of Variance (ANOVA) 
Source of 

variation i.e., 
Factors 

Sum of 
Squares 

(SS) 
Degrees of freedom (df) Mean Square (MS) F-statistic 

Direct Impact of Main Factors 

𝐴𝐴 𝑆𝑆𝑆𝑆𝐴𝐴 a-1 𝑀𝑀𝑆𝑆𝐴𝐴 =
𝑆𝑆𝑆𝑆𝐴𝐴
𝑑𝑑𝑑𝑑𝐴𝐴

 𝐶𝐶 =
𝑀𝑀𝑆𝑆𝐴𝐴
𝑀𝑀𝑆𝑆𝑆𝑆

 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝐷𝐷 𝑆𝑆𝑆𝑆𝐷𝐷 d-1 𝑀𝑀𝑆𝑆𝐷𝐷 =
𝑆𝑆𝑆𝑆𝐷𝐷
𝑑𝑑𝑑𝑑𝐷𝐷

 𝐶𝐶 =
𝑀𝑀𝑆𝑆𝐷𝐷
𝑀𝑀𝑆𝑆𝑆𝑆

 

Interaction Effects 

2-way  

𝐴𝐴𝐵𝐵 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵 (𝑣𝑣 − 1) × (𝑏𝑏 − 1) 𝑀𝑀𝑆𝑆𝐴𝐴𝐵𝐵 =
𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵
𝑑𝑑𝑑𝑑𝐴𝐴𝐵𝐵

 𝐶𝐶 =
𝑀𝑀𝑆𝑆𝐴𝐴𝐵𝐵
𝑀𝑀𝑆𝑆𝑆𝑆

 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝐶𝐶𝐷𝐷 𝑆𝑆𝑆𝑆𝐶𝐶𝐷𝐷  (𝑐𝑐 − 1) × (𝑑𝑑 − 1) 𝑀𝑀𝑆𝑆𝐶𝐶𝐷𝐷 =
𝑆𝑆𝑆𝑆𝐶𝐶𝐷𝐷
𝑑𝑑𝑑𝑑𝐶𝐶𝐷𝐷

 𝐶𝐶 =
𝑀𝑀𝑆𝑆𝐶𝐶𝐷𝐷
𝑀𝑀𝑆𝑆𝑆𝑆

 

3-way  

𝐴𝐴𝐵𝐵𝐶𝐶 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶  (𝑣𝑣 − 1) × (𝑏𝑏 − 1) 
× (𝑐𝑐 − 1) 𝑀𝑀𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶 =

𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶
𝑑𝑑𝑑𝑑𝐴𝐴𝐵𝐵𝐶𝐶

 𝐶𝐶 =
𝑀𝑀𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶
𝑀𝑀𝑆𝑆𝑆𝑆

 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝐵𝐵𝐶𝐶𝐷𝐷 𝑆𝑆𝑆𝑆𝐵𝐵𝐶𝐶𝐷𝐷 (𝑏𝑏 − 1) × (𝑐𝑐 − 1) 
× (𝑑𝑑 − 1) 𝑀𝑀𝑆𝑆𝐵𝐵𝐶𝐶𝐷𝐷 =

𝑆𝑆𝑆𝑆𝐵𝐵𝐶𝐶𝐷𝐷
𝑑𝑑𝑑𝑑𝐵𝐵𝐶𝐶𝐷𝐷

 𝐶𝐶 =
𝑀𝑀𝑆𝑆𝐵𝐵𝐶𝐶𝐷𝐷
𝑀𝑀𝑆𝑆𝑆𝑆

 

4-way  𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷  𝑘𝑘 = (𝑣𝑣 − 1) × (𝑏𝑏 − 1) 
× (𝑐𝑐 − 1) × (𝑑𝑑 − 1) 𝑀𝑀𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷 =

𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷
𝑑𝑑𝑑𝑑𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷

 𝐶𝐶 =
𝑀𝑀𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷
𝑀𝑀𝑆𝑆𝑆𝑆

 

Error SSE N-k 𝑀𝑀𝑆𝑆𝑆𝑆 =
𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁 − 𝑘𝑘

  

Total SST N-1   
 
     If F-statistic < F-critical, the corresponding 𝐻𝐻0 is accepted, otherwise 𝐻𝐻1 is accepted.  The 
acceptance of 𝐻𝐻0 implies that the corresponding parameter does not significantly affect the 
performance metric, while the acceptance of 𝐻𝐻1 implies the contrary i.e., changes in the 
corresponding parameter produces statistically significantly variance in the performance 
metric.   
 
Procedure  
Step 1     Declare metric, number_of_replications, parameters, parameter_levels  
Step 2     For each metric do 
Step 2a   Set H0 and H1  
Step 2b   Compute the following: 

𝐶𝐶𝐶𝐶 : Correction factor 
𝑆𝑆𝑆𝑆𝑇𝑇 ∶ Total sum of squares for individual parameters 
𝑆𝑆𝑆𝑆𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1,⋯ , 𝑎𝑎 : Sum of squares of each parameter, where 𝑎𝑎 is the number 
of parameters 
𝑆𝑆𝑆𝑆𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖  , 𝑖𝑖, 𝑗𝑗 = 1,⋯ , 𝑎𝑎 & 𝑖𝑖 ≠ 𝑗𝑗 : Sum of squares for 2-way interactions 
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𝑆𝑆𝑆𝑆𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑘𝑘  , 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1,⋯ , 𝑎𝑎 & 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘,… : Sum of squares for 3-way 
interactions 
𝑆𝑆𝑆𝑆𝑝𝑝1⋯𝑝𝑝𝑠𝑠 ∶ s-way interactions   
𝑆𝑆𝑆𝑆𝐸𝐸 ∶ Error sum of squares  

Step 2c   For the ANOVA table compute the following with respect to each of the main 
parameters, the interaction effects and error term 

𝑑𝑑𝑑𝑑 : Degrees of freedom  
𝑀𝑀𝑆𝑆𝑆𝑆 : Mean sum of squares  

             𝐶𝐶 − 𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑐𝑐 
Step 2d   If 𝐶𝐶 − 𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑐𝑐 < 𝐶𝐶 − 𝑐𝑐𝑒𝑒𝑖𝑖𝑎𝑎𝑖𝑖𝑐𝑐𝑣𝑣𝑣𝑣 at 5% level of significance, then accept 𝐻𝐻0 else 
accept 𝐻𝐻1. 

6. Experimental Setup 
     In this section we present the specifications of the Hadoop cluster, the workload and the 
parameter settings used for our experiment. 

6.1 Cluster Configuration 
To conduct the experiment we built a 4-node Hadoop cluster with Apache Hadoop 3.2.1 
release, as it is the latest stable version at the time of experimentation.  The cluster comprises 
of 3 Datanodes and a master node wherein both Namenode and Secondary Namenode services 
are deployed.  The cluster configurations are presented in the table below: 
 

Table 2. Experimental Cluster Configuration 

Cluster Specifications Name node (NN) Data node 
1 (DN1) 

Data node 
2 (DN2) 

Data node 
3 (DN3) 

Software 

Operating 
System Ubuntu 16.04.2 (GNU/Linux 4.13.0-37-generic×86 64) 

JDK 1.8.0 
Hadoop 3.2.1 

Node 
Configurations 

CPU 
Intel(R) Core(TM) 
i5-7200U CPU @ 

2.50GHz × 4 

Intel(R) Core(TM) i5-6300U CPU @ 
2.40GHz × 4 

Memory 15.5 GiB 15.5 GiB 7.7 GiB 15.5 GiB 
Disk 2.0 TB 983.4 GB 2.0 TB 2.0 TB 

Workload Terasort Benchmark 

6.2 Hadoop Parameter Combinations for Experimentation 
     We conducted a total of 72 experimental runs for the set of 36 combinations of Hadoop 
configuration settings, replicating each combination twice. We restricted the number of 
combinations and the experimental replication factor in order to make the experimental study 
viable.   According to Montgomery [22], since resources are usually limited, the number of 
replicates the experimenter can employ may be restricted.  In practice, the number of replicates 
is at least 2.  The experiments were conducted in random order based on a simple random 
number generator.  Replication and randomization help in attenuating the effect of noise in the 
experimental runs.   
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     The performance metrics analyzed are job completion time, number of task failures 
(reduce/map tasks), resource utilization (CPU, Memory) and disk spillage.  Note that the 
technique is applicable to any of the hundreds of Hadoop Performance metrics that one can 
capture through monitoring tools like Ganglia or Nagios.  The Hadoop configuration settings 
used in the experiment are tabulated below: 
 

Table 3. Sample of Hadoop Configuration Setting  

Input Parameters with Levels Configuration File Settings  
with Default Values 

𝐴𝐴:mapreduce.job.reduces 
Levels:  {1, 10} 

mapred-site.xml 
<property> 
<name>mapreduce.job.reduces</name> 
<value>1</value> 
</property> 

𝐵𝐵:dfs.replication 
Levels:  {1, 2, 3} 

hdfs-site.xml  
<property> 
<name>dfs.replication</name> 
<value>3</value> 
</property> 

𝐶𝐶:mapreduce.reduce.shuffle.parallelcopies 
Levels:  {5, 10} 

mapred-site.xml 
<property> 
<name>mapreduce.reduce.shuffle.parallelcopies
</name> 
<value>5</value> 
</property> 

𝐷𝐷:mapreduce.task.io.sort.mb 
Levels:  {64, 128, 256} 

mapred-site.xml 
<property> 
<name>mapreduce.task.io.sort.mb</name> 
<value>100</value> 
</property> 

6.3 Hadoop Workload 
Terasort was used as the test application as it is suitable to test both HDFS and MapReduce 
parameters.  It is both CPU and I/O intensive especially in the shuffle and sort phases and thus 
affects most of the performance metrics.  Terasort benchmark application has 3 components 
viz., Teragen generates synthetic data for input, Terasort sorts the data and Teravalidate 
validates the sorted data. We generated 5GB i.e., 50 million rows of input data using Teragen 
and executed Terasort for our experimental study. 

7. Results and Discussion 
Application statistics were collected from YARN administration web UI and ANOVA 
computations were carried out for each performance metric. Table 4 presents the collated F-
values against their F-critical at 5% level of significance. 
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Table 4. F-statistics 

Source of 
Variation 

F – value 
F-

critica
l 

Degrees 
of 

Freedo
m 

Job 
Completio

n Time 

Killed 
Maps 

Killed 
Reducer

s 

Failed 
Maps 

CPU 
Time 
Spent 

Memor
y MB-

sec 

Vcore
s 

-sec 

A 1 29.53 0.09 250 1.08 366.28 64.82 65.14 4.113 
B 2 0.3 1.18 0.19 0.1 1.95 0.28 0.29 3.259 
C 1 0.29 0.09 0.07 0.17 0.27 0.24 0.25 4.113 

D 2 7046.57 65451.9
1 4.97 3148.1

8 
1632.1

4 26.6 26.5 3.259 

2-Way 
Interaction

s 
13 1.44 1.6 0.7 0.42 15.43 2.76 2.78 2.003 

A*B 2 0.62 4.45 0.19 0.36 3.66 0.31 0.3 3.259 
A*C 1 0.2 2.27 0.07 0 3.58 0.22 0.2 4.113 
A*D 2 8.18 0.64 2.36 1.08 91.78 17.14 17.25 3.259 
B*C 2 0.11 1.73 1.47 0.93 0.92 0.01 0.01 3.259 
B*D 4 0.13 1.18 0.07 0.1 0.86 0.08 0.08 2.634 
C*D 2 0.07 0.09 0.35 0.17 0.44 0.25 0.24 3.259 

3-Way 
Interaction

s 
12 0.18 4.82 0.59 0.55 2.1 0.11 0.11 2.033 

A*B*C 2 0.09 1.73 1.47 0.75 3.19 0.01 0.01 3.259 
A*B*D 4 0.27 9.91 0.07 0.36 1.42 0.1 0.09 2.634 
A*C*D 2 0.14 2.27 0.35 0 3.33 0.27 0.28 3.259 
B*C*D 4 0.17 2.55 0.8 0.93 1.61 0.1 0.1 2.634 
4-Way 

Interaction
s 

4 0.19 0.91 0.8 0.75 2.25 0.11 0.12 2.634 

A*B*C*D 4 0.19 0.91 0.8 0.75 2.25 0.11 0.12 2.634 
Error 36         
Total 71         

      
The highlighted F-statistics exceed F-critical values.  The corresponding parameter or 
combination of parameters has significant impact on the particular performance metric.  The 
graphs depicting the main and interaction effects exhibit the configuration settings that have 
significant impact.  A sample of the graphs generated to explore the sub-optimal configuration 
settings is presented below. 
 
a) Impact on Job Completion Time:  Minimizing the application execution time is one 
primary concern in Big data processing.  The Pareto chart for the standardized effects reveals 
that the parameters 𝐷𝐷  and 𝐴𝐴  and their interaction 𝐴𝐴𝐷𝐷  have significant impact on the job 
completion time.  Other parameters have negligible impact.  During the initial runs of the 
experiment, we observed that the Sort and Shuffle phase took significantly longer time than 
other phases for 𝐴𝐴 = 1.  We quickly infered that it may be due to the single reducer handling 
the entire workload.  But after increasing 𝐴𝐴 to 10, we observed an unexpected rise in the job 
completion time.  For the parameter 𝐷𝐷, the job completion time slightly increased when the 
setting was modified from 64 to 128.  But jobs began to fail uniformly when 𝐷𝐷 was set to 256.  
The increase in buffer size did not improve the processing speed.  In fact, at 𝐷𝐷 = 256 no 



3632                                                                                                 Priya et al.: An Analytic solution for the Hadoop Configuration  
Combinatorial Puzzle based on General Factorial Design 

application statistics were available due to job failures and we had to assign an incomparably 
large value for the metric at 𝐷𝐷 = 256 to make computations feasible.  Fig. 4 indicates that the 
interaction effect of 𝐴𝐴 and 𝐷𝐷 is significant as well.   
 

 
Fig. 4. Impactful Parameters for Job Completion Time 

 
b) Impact on Killed Maps: MapReduce tasks are killed in circumstances where the task does 
not report progress or the scheduler needs the slot for some other task.  In the event of task 
slow down, Hadoop performs speculative execution by running another instance of the 
straggler task on some other DataNode.  The task which finishes first is accepted and the other 
is killed.  Speculative execution speeds up job completion but the subsequent task killing 
wastes cluster resources.  Hence, fewer killed tasks indicate better performance.  In our 
experiment, we observed that the parameter 𝐷𝐷  and the interactions 𝐴𝐴𝐵𝐵𝐷𝐷  and 𝐴𝐴𝐵𝐵  have 
significant impact on the number of tasks killed.  At 𝐷𝐷 = 256 all the map tasks get killed 
causing the job to fail.  The Pareto chart in Fig.5 shows that the combined effect of 𝐴𝐴 and 𝐵𝐵 
also increases the number of killed maps, irrespective of the value of 𝐷𝐷.   
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           Fig. 5. Impactful parameters for Killed Maps 

 
c) Impact on Resource Consumption:  Hadoop performance heavily relies on the cluster 
resource availability and Hadoop configurations related to resources. The common resource 
bottlenecks in the Hadoop environment are CPU, RAM, network bandwidth and storage I/O.  
In Fig. 6 the impact of the parameters on CPUTimeSpent is depicted.  It indicates an acute 
increase in CPUTimeSpent with the increase in 𝐴𝐴 and 𝐷𝐷 values.  Similar trends are observed 
in vcores and memory utilization.   At 𝐷𝐷 = 256, job failures occurred as resources got severely 
constrained. Notice that the metric CPUTimeSpent plunges to zero at 𝐷𝐷 = 256 as jobs stopped 
executing. 
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Fig. 6. Impactful parameters for CPUTimeSpent 

 
d) Impact on Disk Spillage:  Disk spillage can cause serious performance lags in a Hadoop 
cluster.  It occurs due to insufficient memory for handling the mapper outputs and results in 
memory swaps.  In order to minimize the amount of spilled records, Hadoop administrators 
increase the buffer size.  Our experiments too showed a slight dip in the metric when 𝐷𝐷 was 
increased from 64 to 128.  However, job failures occurred with a further increase to 256.  On 
the brighter side, disk spillage reduced when the number of reducers 𝐴𝐴 was increased from 1 
to 10 except when 𝐷𝐷 = 256. 

 
Fig. 7. Impactful parameters for SpilledRecords 
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    Notice that the parameters 𝐵𝐵 :dfs.replication and 
𝐶𝐶:mapreduce.reduce.shuffle.parallelcopies do not significantly impact any of the Performance 
metrics listed.  Overall, the experiments reveal that the factors 𝐴𝐴:mapreduce.job.reduces and 
𝐷𝐷:mapreduce.task.io.sort.mb are impactful parameters both independently and combined.  It 
indicates to the Hadoop administrator to focus his configuration tuning efforts on parameters 
A and D.  Thus the General Factorial Design technique resolves the problem of identifying the 
right parameters to be tuned from among hundreds of Hadoop parameters. 
    Finally, in Table 5, we present the performance gain in terms of % decrease of the sub-
optimal value of each metric against its value at the default setting 〈1,3,5,100〉.  Most of the 
performance metrics show a significant performance enhancement at 〈1,1,10,128〉  when 
compared with the default setting.    
 

Table 5. Performance gain observed in various metrics 

Performance metrics % decrease  
Sub-optimal 

Parametric settings 
〈𝑨𝑨,𝑩𝑩,𝑪𝑪,𝑫𝑫〉 

Job Completion Time 22% 〈1,2,10,128〉 
Killed Maps 50% 〈1,3,10,64〉 
Killed Reducers 0% 〈1,1,10,128〉 
Failed Maps 0% 〈1,1,10,128〉 
CPU Time Spent 12% 〈1,1,10,64〉 
Memory MB-sec  15% 〈1,1,10,128〉 
vcores-sec 21% 〈1,1,10,128〉 
Disk Spillage 23% 〈10,1,10,128〉 

8. Conclusion 
     Configuration tuning is crucial to achieve service level performance for Big data 
applications.  However, big data processing platforms like Hadoop have a large set of 
parameters which makes the goal of achieving performance optimality a farfetched proposition.  
Rather, aiming for improved performance with a sub-optimal configuration is a more 
pragmatic approach. This article presented a statistical technique to identify a subset of 
parameters having significant impact on the performance of a particular Big data application 
called Terasort.  We performed an empirical analysis based on General Factorial Design on a 
subset of parameters by varying the configuration settings.  Our experimental results revealed 
that out of the initial subset of parameters, mapreduce.job.reduces and 
mapreduce.task.io.sort.mb caused significant performance variance in terms of most of the 
Hadoop performance metrics, both independently and combined.  The performance variance 
caused by other parameters was statistically insignificant.  The configuration setting, thus 
deduced, showed considerable improvement in most of the performance metrics, especially 
the Job completion time which was reduced by 22%.  The technique adaptable to any 
parametric subset as it is generic, scalable and completely objective.  The General Factorial 
Design technique effectively resolves the murkiness underlying the configuration tuning 
exercise and provides Hadoop administrators the required base to substantiate their parameter 
tuning decisions.   
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